318 research outputs found

    Radio Observations Reveal Unusual Circumstellar Environments for Some Type Ibc Supernova Progenitors

    Full text link
    We present extensive radio observations of the nearby Type Ibc supernovae 2004cc, 2004dk, and 2004gq spanning 8-1900 days after explosion. Using a dynamical model developed for synchrotron emission from a slightly decelerated shockwave, we estimate the velocity and energy of the fastest ejecta and the density profile of the circumstellar medium. The shockwaves of all three supernovae are characterized by non-relativistic velocities of v ~ (0.1-25)c and associated energies of E ~ (2-10) * 1e47 erg, in line with the expectations for a typical homologous explosion. Smooth circumstellar density profiles are indicated by the early radio data and we estimate the progenitor mass loss rates to be ~ (0.6-13) * 1e-5 M_sun/yr (wind velocity 10^3 km/s). These estimates approach the saturation limit (~1e-4 M_sun/yr) for line-driven winds from Wolf-Rayet stars, the favored progenitors of SNe Ibc including those associated with long-duration GRBs. Intriguingly, at later epochs all three supernovae show evidence for abrupt radio variability that we attribute to large density modulations (factor of ~3-6) at circumstellar radii of r ~ (1-50) * 1e16 cm. If due to variable mass loss, these modulations are associated with progenitor activity on a timescale of ~ 10-100 years before explosion. We consider these results in the context of variable mass loss mechanisms including wind clumping, metallicity-independent continuum-driven ejections, and binary-induced modulations. It may also be possible that the SN shockwaves are dynamically interacting with wind termination shocks, however, this requires the environment to be highly pressurized and/or the progenitor to be rapidly rotating prior to explosion. The proximity of the density modulations to the explosion sites may suggest a synchronization between unusual progenitor mass loss and the SN explosion, reminiscent of Type IIn supernovae. [ABRIDGED]Comment: 23 pages, 8 figures, 5 tables, accepted to Ap

    Update on the Talent aortic stent-graft: A preliminary report from United States phase I and II trials

    Get PDF
    AbstractPurpose: Phase I and phase II trials were conducted to determine the safety and efficacy of the Talent aortic stent-graft (Medtronic World Medical, Sunrise, Fla) in the treatment of infrarenal abdominal aortic aneurysms (AAA). This is a preliminary report of the technical results and 30-day clinical outcome of these trials. Methods: Multicenter prospective trials were conducted to test the Talent stent-graft in high-risk and low-risk patient populations with AAA, including phase I feasibility and phase II clinical trials. The low-risk study included concurrent surgical controls. Results: In the phase I trial, deployment success was achieved in 92% (23/25 patients), and initial technical success was 78% (18/23 implants without endoleak). The 30-day technical success rate was 96%, with six endoleaks that resolved spontaneously (without need for further intervention); and the 30-day mortality rate was 12% (3/25 patients). The phase II high-risk trial demonstrated a deployment success of 94% (119/127 patients) and an initial technical success of 86% (102/119 implants). The 30-day technical success rate was 96%, and the 30-day mortality rate was 1.5% (2/127 patients). The phase II low-risk trial included a first-generation and a second-generation Talent stent-graft. Deployment success rates were 97% and 99%, respectively, and technical success rates at 30 days were 97% and 96%, respectively. The 30-day mortality rate was 2% in the phase II low-risk first-generation device trial, and the adverse-event rate was 20%. Corresponding figures for the second-generation device were 0% and 1.8%, respectively. Conclusion: The Talent stent-graft can be deployed successfully and achieves endovascular exclusion in a large proportion of patients with AAA. Morbidity and mortality rates are acceptable. One-year clinical results and the comparison with concurrent surgical control subjects remain to be evaluated. (J Vasc Surg 2001;33:S146-9.

    Multi-omic analysis elucidates the genetic basis of hydrocephalus

    Get PDF
    We conducted PrediXcan analysis of hydrocephalus risk in ten neurological tissues and whole blood. Decreased expression of MAEL in the brain was significantly associated (Bonferroni-adjusted p \u3c 0.05) with hydrocephalus. PrediXcan analysis of brain imaging and genomics data in the independent UK Biobank (N = 8,428) revealed that MAEL expression in the frontal cortex is associated with white matter and total brain volumes. Among the top differentially expressed genes in brain, we observed a significant enrichment for gene-level associations with these structural phenotypes, suggesting an effect on disease risk through regulation of brain structure and integrity. We found additional support for these genes through analysis of the choroid plexus transcriptome of a murine model of hydrocephalus. Finally, differential protein expression analysis in patient cerebrospinal fluid recapitulated disease-associated expression changes in neurological tissues, but not in whole blood. Our findings provide convergent evidence highlighting the importance of tissue-specific pathways and mechanisms in the pathophysiology of hydrocephalus

    A massive, quiescent galaxy at redshift of z=3.717

    Get PDF
    In the early Universe finding massive galaxies that have stopped forming stars present an observational challenge as their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These have revealed the presence of massive, quiescent early-type galaxies appearing in the universe as early as z\sim2, an epoch 3 Gyr after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy formation models where they form rapidly at z\sim3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have now reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, however the evidence for their existence, and redshift, has relied entirely on coarsely sampled photometry. These early massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here, we report the spectroscopic confirmation of one of these galaxies at redshift z=3.717 with a stellar mass of 1.7×\times1011^{11} M_\odot whose absorption line spectrum shows no current star-formation and which has a derived age of nearly half the age of the Universe at this redshift. The observations demonstrates that the galaxy must have quickly formed the majority of its stars within the first billion years of cosmic history in an extreme and short starburst. This ancestral event is similar to those starting to be found by sub-mm wavelength surveys pointing to a possible connection between these two populations. Early formation of such massive systems is likely to require significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely to the published version. Uploaded 6 months after publication in accordance with Nature polic

    Fast variability from black-hole binaries

    Full text link
    Currently available information on fast variability of the X-ray emission from accreting collapsed objects constitutes a complex phenomenology which is difficult to interpret. We review the current observational standpoint for black-hole binaries and survey models that have been proposed to interpret it. Despite the complex structure of the accretion flow, key observational diagnostics have been identified which can provide direct access to the dynamics of matter motions in the close vicinity of black holes and thus to the some of fundamental properties of curved spacetimes, where strong-field general relativistic effects can be observed.Comment: 20 pages, 11 figures. Accepted for publication in Space Science Reviews. Also to appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    The First Quiescent Galaxies in TNG300

    Full text link
    We identify the first quiescent galaxies in TNG300, the largest volume of the IllustrisTNG cosmological simulation suite, and explore their quenching processes and time evolution to z=0. We find that the first quiescent galaxies with stellar masses M_* > 3 x 10^{10} M_sun and specific star formation rates sSFR < 10^{-11} yr^{-1} emerge at z~4.2 in TNG300. Suppression of star formation in these galaxies begins with a thermal mode of AGN feedback at z~6, and a kinetic feedback mode acts in each galaxy by z~4.7 to complete the quenching process, which occurs on a time-scale of ~0.35 Gyr. Surprisingly, we find that the majority of these galaxies are not the main progenitors of their z=0 descendants; instead, four of the five galaxies fall into more massive galaxies in subsequent mergers at a range of redshifts 2.5 < z < 0.2. By z=0, these descendants are the centres of galaxy clusters with average stellar masses of 8 x 10^{11} M_sun. We make predictions for the first quenched galaxies to be located by the James Webb Space Telescope (JWST).Comment: 6 pages, 4 figure

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

    Get PDF
    A diffuse flux of astrophysical neutrinos above 100TeV100\,\mathrm{TeV} has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35TeV35\,\mathrm{TeV} and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (fe:fμ:fτ)(1:1:1)(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of (0:1:0)(0:1:0)_\oplus is excluded at 3.3σ3.3\sigma, and a purely shower-like composition of (1:0:0)(1:0:0)_\oplus is excluded at 2.3σ2.3\sigma.Comment: 8 pages, 3 figures. Submitted to PR

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure
    corecore